US009170880B1

a2 United States Patent

Dropps

US 9,170,880 B1
Oct. 27, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

METHOD AND SYSTEM FOR DATA
INTEGRITY IN TCAMS

Applicant: QLOGIC, Corporation, Aliso Viejo,

CA (US)

Inventor: Frank R. Dropps, Maple Grove, MN
(US)

Assignee: QLOGIC, Corporation, Aliso Viejo,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 94 days.

Appl. No.: 14/048,849

Filed: Oct. 8,2013

Int. Cl.

G1IC 29/00 (2006.01)

GOG6F 11/10 (2006.01)

U.S. CL

CPC i GOG6F 11/1064 (2013.01)

Field of Classification Search

CPC . HO4L 49/552; HOAL 49/354; HO4L 49/3009;
G11C 15/04; G11C 2029/0411; G11C 15/00;
G11C 2207/104; G11C 2029/0409; G11C
29/42; G11C 29/4401; G11C 29/816; G11C
29/44; GOGF 11/106; GO6F 11/1666; GOGF
11/1068; GOG6F 11/1064; HO3M 13/09

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,491,703 A * 2/1996 Barnabyetal. 714/766
6,597,595 B1* 7/2003 Ichiriuetal. 365/49.18
7,050,318 B1* 5/2006 Argyres 365/49.15
7,304,873 B1* 12/2007 Guptaccccoceoveeeennene 365/49.1
7,304,875 B1* 12/2007 Lienetal. 365/49.1
8,364,852 B1* 1/2013 Shuklaetal.ccc..... 710/3
2005/0060631 Al* 3/2005 Driediger 714/763
2005/0074009 Al* 4/2005 Kanetake et al. .. 370/392
2008/0008202 Al* 1/2008 Terrelletal. 370/401
2008/0049522 Al* 2/2008 Cohen 365/189.07
2012/0110411 Al* 5/2012 Cheungetal. 714/758
OTHER PUBLICATIONS

Sideris, et al., “Cost Effective Protection Techniques for TCAM
Memory Arrays”, IEEE Transactions on Computers, vol. 61, No. 12,
(Dec. 2012),1778-1788.

* cited by examiner

Primary Examiner — Guerrier Merant
(74) Attorney, Agent, or Firm — Klein, O’Neill & Singh,
LLP

(57) ABSTRACT

Method and system for a network device are provided. The
method includes generating error correction code (ECC) for
writing data to a ternary content addressable memory used by
the network device; storing the ECC code and the data at the
TCAM; generating an ECC for a search key, used for search-
ing the TCAM; and detecting any error in the stored data by
using the search key with appended ECC.

20 Claims, 6 Drawing Sheets

104
(

106
(

108
(

| Processor |

Memory

| Storage

A A

Y Y

4
114

L

A

[A

A J

,—| 1/O Device(s) |

Y

Y

Display |—\

112 110
116
Y
Network Interface 102
Y
12&]
Computing |, | Switch - .
System(s) o Element »| Other Device(s)
1
(b
122 | 128 124
Storage
Device(s)
100

L126

U.S. Patent Oct. 27, 2015 Sheet 1 of 6 US 9,170,880 B1
(104 (106 (108
Processor Memory Storage
I I I ™
—1 /O Device(s) Display |—
112 110
116
1 v
102

Network Interface

120

H

Computing
System(s)

-

P>

SW|tch
Element

P

?

L122

T

Storage
Device(s)

L126

FIG. 1

Other Device(s)

\
128

L124

US 9,170,880 B1

Sheet 2 of 6

Oct. 27, 2015

U.S. Patent

¢ 9Ol
¢l ~0¢¢
_
<{()0INaD |«
10d 140d9o
vze 10d[T T
J »{(¥)4nq0 H—» »(4NgL > 1od)
10SS9201d > <« iNgd [« Hody | <
\9|2Z LT & ___ |- > (£2)140d4
H 002 -
1BQSS0ID) 907 80 ° Yl A0LZ
Alowa 0ce
aJemul4 19INpayos vv_ 4ng1 > 1ody
|eqo| <«—4N9d |« 1Lody | <
9zz? \gzz (00)1340d J
57T 0z’ 20Z A% wNL

US 9,170,880 B1

Sheet 3 of 6

Oct. 27, 2015

U.S. Patent

¢ 9l
9l¢ Aiua
NVOL =— —
~O ¢l 90¢
< «— <
Jepoduy ” NVOL
A| ——
70¢€ coe ,
< ~ _ < Jojesauan) NO3J ¢ ~ AN
1€ ydlew - Aoy
NVOL ﬂ yoJeas

0L€ eled

—

INVO1

80¢

Jojelsauan)
003 [enedg

N

N

00€

US 9,170,880 B1

Sheet 4 of 6

Oct. 27, 2015

U.S. Patent

NVO.1 0} anjeA
D03 uswedwod

pue ejep ajlIAA

anjea D03 Jo
Juswa|dwod ajelausn)

v 'Old

ianjea

anjeA DN pajessusb

NVO1 03

pue ejep ajlIAA

(1)X 8IIAA

YO0vd—

Elep JJUMm,
INVYO.L Jo} senjea §O 3 8jeisuss)

ON

U.S. Patent Oct. 27, 2015 Sheet 5 of 6

500

(" st)~B502
}

Calculate ECC on
Raw Search Key

~—B504

'

Append ECC to
Raw Search Key to
form a modified
Search Key

—~—B506

'

Search TCAM
using modified
Search Key

—B508

}
(" Done)~B510

FIG. 5A

US 9,170,880 B1

U.S. Patent Oct. 27, 2015 Sheet 6 of 6 US 9,170,880 B1

50% (Stfrt)~B502

Calculate ECC on Raw
Search Key —B504

v

Append ECC to Raw
Search Key to form a —~—B506
modified Search Key

v

Set TCAM Entry

number “‘n” = & —B508A
v

Set match = @ —~—B508B
v

Set match Entry =@ (~—B508C

Entry
number “n” >
Max TCAM

Yes

B508G B508H
I |
n=n-+1 Set | Set match
match = 1 "| Entry =n

I

US 9,170,880 B1

1
METHOD AND SYSTEM FOR DATA
INTEGRITY IN TCAMS

TECHNICAL FIELD

The embodiments disclosed herein are related to data
integrity in computing devices and more particularly, in net-
working devices.

RELATED ART

Network devices are commonly used to move network
information (which may also be referred to interchangeably,
as frames, packets, data or commands) between computing
systems (for example, servers) or between computing sys-
tems and network devices (for example, storage systems).
Various hardware and software components are used to
implement network communication. Network devices for
example, switches, adapters and others typically communi-
cate using ports that have logic and circuitry for sending and
receiving information. The ports typically use receive buffers
(or memory storage devices) for receiving and temporarily
storing information (for example, frames, packets and other
information), before information is sent to an appropriate
destination.

Physical size of computing devices and the memory struc-
tures used by such devices continue to shrink making them
susceptible to single event based errors. Data stored at
memory devices ought to be checked for errors and protected.
One way to detect and correct errors is by using error correct-
ing code (ECC).

ECC is typically used by data storage and transmission
devices. When data is written to a storage location, ECC is
computed and stored alongside the data. When the data is read
back, the ECC is typically recomputed and compared against
ECC stored at the storage location. Any discrepancy is an
indication of bit errors in the stored data. By examining the
discrepancies between the ECCs, errors can be detected and
fixed. Typically, an ECC algorithm is applied to a fixed num-
ber of data bits, for example, 32, 64, 128, 256, 512 or 1024
bits. Hamming code and BCH are two examples of using
ECC.

Data that is stored in static random access memory
(SRAM) and/or dynamic random access memory (DRAM)
used by network devices is typically protected. However, data
stored at TCAMs (ternary content addressable memory) is
not typically protected. One reason for not protecting TCAM
data is that it has been considered to be complex because it
requires reading matching TCAM entries, before detecting
errors. The read operations consume bandwidth and power. It
is desirable to protect TCAM data because TCAMs may be
used to store network routing information and other informa-
tion type. Continuous efforts are being made to protect
TCAM data.

BRIEF DESCRIPTION OF THE DRAWINGS

The various present embodiments now will be discussed in
detail with an emphasis on highlighting the advantageous
features. These embodiments depict the novel and non-obvi-
ous systems and methods for network devices shown in the
accompanying drawings, which are for illustrative purposes
only. These drawings include the following figures, in which
like numerals indicate like parts:

FIG. 1 shows an example of a system using the present
embodiments;

10

15

20

25

30

40

45

50

55

60

65

2

FIG. 2 shows an example of a switch element used in the
system of FIG. 1;

FIG. 3 is a functional block diagram of an error detection
system for TCAMs, according to the present embodiments;

FIG. 4 shows a process flow diagram for writing to a
TCAM using ECC, according to one embodiment; and

FIGS. 5A/5B show process flow diagrams for searching a
TCAM using a search key with appended ECC, according to
one embodiment.

DETAILED DESCRIPTION

The following detailed description describes the present
embodiments with reference to the drawings. In the drawings,
reference numbers label elements of the present embodi-
ments. These reference numbers are reproduced below in
connection with the discussion of the corresponding drawing
features.

As a preliminary note, any of the embodiments described
with reference to the figures may be implemented using soft-
ware, firmware, hardware (e.g., fixed logic circuitry), manual
processing, or a combination of these implementations. The
terms “logic,” “module,” “component,” “system” and “func-
tionality,” as used herein, generally represent software, firm-
ware, hardware, or a combination of these elements. For
instance, in the case of a software implementation, the terms
“logic,” “module,” “component,” “system,” and “functional-
ity” represent program code that performs specified tasks
when executed on a processing device or devices (e.g., CPU
or CPUs). The program code can be stored in one or more
computer readable memory devices.

More generally, the illustrated separation of logic, mod-
ules, components, systems, and functionality into distinct
units may reflect an actual physical grouping and allocation
of software, firmware, and/or hardware, or can correspond to
a conceptual allocation of different tasks performed by a
single software program, firmware program, and/or hardware
unit. The illustrated logic, modules, components, systems,
and functionality may be located at a single site (e.g., as
implemented by a processing device), or may be distributed
over a plurality of locations.

The term “machine-readable media” and the like refers to
any kind of non-transitory medium for retaining information
in any form, including various kinds of storage devices (mag-
netic, optical, static, etc.). Machine-readable media may also
encompasses transitory forms for representing information,
including various hardwired and/or wireless links for trans-
mitting the information from one point to another.

The embodiments disclosed herein, may be implemented
as a computer process (method), a computing system, or as an
article of manufacture, such as a computer program product
or non-transitory computer-readable media. The computer
program product may be non-transitory, computer storage
media, readable by a computer device, and encoding a com-
puter program of instructions for executing a computer pro-
cess.

Various network standards and protocols may be used to
enable network communications using the disclosed embodi-
ments, including Fibre Channel (FC), Fibre Channel over
Ethernet (FCoE), Ethernet, and others. Below is a brief intro-
duction to some of these standards. The present embodiments
may be described herein with reference to the Fibre Channel,
FCoE and Ethernet protocols. However, these protocols are
used merely for ease of reference and to provide examples.
The present embodiments are not limited to Fibre Channel,
FCoE and Ethernet or any other standard.

29 < 29 <

US 9,170,880 B1

3

Fibre Channel (FC) is a set of American National Stan-
dards Institute (ANSI) standards. Fibre Channel provides a
serial transmission protocol for storage and network proto-
cols such as HIPPI, SCSI, IP, ATM and others. Fibre Channel
provides an input/output interface to meet the requirements of
both channel and network users. The Fibre Channel standards
are incorporated herein by reference in their entirety.

Fibre Channel supports three different topologies: point-
to-point, arbitrated loop and Fibre Channel Fabric. The point-
to-point topology attaches two devices directly. The arbi-
trated loop topology attaches devices in a loop. The Fabric
topology attaches computing systems directly to a Fabric,
which are then connected to multiple devices. The Fibre
Channel Fabric topology allows several media types to be
interconnected.

A Fibre Channel switch is a multi-port device where each
port manages a point-to-point connection between itself and
its attached system. Each port can be attached to a server,
peripheral, I/O subsystem, bridge, hub, router, or even
another switch. A switch receives messages from one port and
routes them to other ports. Fibre Channel switches use
memory buffers to hold frames received and sent across a
network. Associated with these buffers are credits, which are
the number of frames that a buffer can hold per Fabric port.

Ethernet is a family of computer networking technologies
for local area networks (LLANs). Systems communicating
over Ethernet divide a stream of data into individual frames
(or packets). Each frame contains source and destination
addresses and error-checking data so that damaged data can
be detected and re-transmitted. Ethernet is standardized in
IEEE 802.3, which is incorporated herein by reference in its
entirety.

Fibre Channel over Ethernet (FCoE) is a converged net-
work and storage protocol for handling both network and
storage traffic. The FCoE standard enables network adapters
and network switches to handle both network and storage
traffic using network and storage protocols. Under FCoE,
Fibre Channel frames are encapsulated in Ethernet frames.
Encapsulation allows Fibre Channel to use Gigabit Ethernet
networks (or higher speeds) while preserving the Fibre Chan-
nel protocol.

The systems and processes described below are applicable
and useful in the upcoming cloud computing environments.
Cloud computing pertains to computing capability that pro-
vides an abstraction between the computing resource and its
underlying technical architecture (e.g., servers, storage, net-
works), enabling convenient, on-demand network access to a
shared pool of configurable computing resources that can be
rapidly provisioned and released with minimal management
effort or service provider interaction. The term “cloud” is
intended to refer to the Internet and cloud computing allows
shared resources, for example, software and information, to
be available, on-demand, like a public utility.

Typical cloud computing providers deliver common busi-
ness applications online, which are accessed from another
web service or software like a web browser, while the soft-
ware and data are stored remotely on servers. The cloud
computing architecture uses a layered approach for providing
application services. A first layer is an application layer that is
executed at client computers. In this example, the application
allows a client to access storage via a cloud. After the appli-
cation layer is a cloud platform and cloud infrastructure,
followed by a “server” layer that includes hardware and com-
puter software designed for cloud-specific services.

FIG. 1 shows an example of a system 100 that may be used
in connection with the present embodiments. System 100
may include a computing system 102, which may be referred

5

10

15

20

25

30

35

40

45

50

55

60

65

4

to as a host system. A typical host system 102 includes several
functional components, including a central processing unit
(CPU) (also referred to as a processor/processors or process-
ing module) 104, a host memory (or main/system memory)
106, a storage device 108, a display 110, input/output (“I/O”)
device(s) 112, and other components (or devices). The host
memory 106 is coupled to the processor 104 via a system bus
oralocal memory bus 114. The processor 104 may be, or may
include, one or more programmable general-purpose or spe-
cial-purpose microprocessors, digital signal processors
(DSPs), programmable controllers, application specific inte-
grated circuits (ASICs), programmable logic devices (PLDs),
or the like, or a combination of such hardware-based devices.

The host memory 106 provides the processor 104 access to
data and program information that is stored in the host
memory 106 at execution time. Typically, the host memory
106 includes random access memory (RAM) circuits, read-
only memory (ROM), flash memory, or the like, or a combi-
nation of such devices.

The storage device 108 may comprise one or more internal
and/or external mass storage devices, which may be or may
include any conventional medium for storing large volumes
of data in a non-volatile manner. For example, the storage
device 108 may include conventional magnetic disks, optical
disks such as CD-ROM or DVD-based storage, magneto-
optical (MO) storage, flash-based storage devices, or any
other type of non-volatile storage devices suitable for storing
structured or unstructured data.

The host system 102 may also include a display device 110
capable of displaying output, such as an LCD or LED screen
and others, and one or more input/output (I/0O) devices 112,
for example, a keyboard, mouse and others. The host system
102 may also include other devices/interfaces for performing
various functions, details of which are not germane to the
inventive embodiments described herein.

The host system 102 also includes a network interface 116
for communicating with other computing systems 122, stor-
age devices 126, and other devices 124 via a switch element
120 and various links. The network interface 116 may com-
prise a network interface card (NIC) or any other device for
facilitating communication between the host system 102,
other computing systems 122, storage devices 126, and other
devices 124. The network interface 116 may include a con-
verged network adapter, a host bus adapter, a network inter-
face card or any other network adapter type. The embodi-
ments described herein may be implemented in network
interface 116.

In one embodiment, the processor 104 of the host system
102 may execute various applications, for example, an e-mail
server application, databases, and other application types.
Data for various applications may be shared between the
computing systems 122 and stored at the storage devices 126.
Information may be sent via switch 120 ports 128. The term
port as used herein includes logic and circuitry for receiving,
processing, and transmitting information.

Each device (e.g. the host system 102, the computing sys-
tems 122, the storage devices 126, and the other devices 124)
may include one or more ports for receiving and transmitting
information, for example, node ports (N_Ports), Fabric ports
(F_Ports), and expansion ports (E_Ports). Node ports may be
located in a node device, e.g. network interface 116 the host
system 102 and an interface (not shown) for the storage
devices 126. Fabric ports are typically located in Fabric
devices, such as a network switch element, for example,
switch element 120.

FIG. 2 isa high-level block diagram of switch element 120,
also referred to as the switch 120. It is noteworthy that the

US 9,170,880 B1

5

embodiments disclosed herein are not limited to switch ele-
ment 120 and may be implemented and practiced in other
network device type, for example, adapter, NICs and other
device types.

Switch element 120 may be implemented as an application
specific integrated circuit (ASIC) having a plurality of ports
128. Frames are received at ports 128 and a global scheduler
230 (also referred to as scheduler 230) then schedules frame
processing/transmission by ports 128.

Ports 128 are generic (GL) ports and may include an
N_Port, F_Port, FL._Port, E-Port, or any other port type. Ports
128 may be configured to operate as Fibre Channel, FCoE or
Ethernet ports. In other words, depending upon what it is
attached to, each GL port can function as any type of port. As
an example, ports 128 of FIG. 2 are drawn on the same side of
the switch element 120. However, ports 128 may be located
onany or all sides of switch element 120. This does not imply
any difference in port or ASIC design. The actual physical
layout of the ports will depend on the physical layout of the
ASIC.

Ports 128 communicate via a time shared crossbar 200,
which includes a plurality of switch crossbars for handling
specific types of data and data flow control information. For
illustration purposes only, the switch crossbar 200 is shown as
a single crossbar. The switch crossbar 200 may be a connec-
tionless crossbar (packet switch) of conventional design,
sized to connect a plurality of paths. This is to accommodate
the ports 128 plus a port 216 for connection to a processor 224
that may be external to the switch element 120. In another
embodiment, the processor 224 may be located within a
switch chassis that houses the switch element 120.

Each port 128 receives incoming frames (or information)
and processes the frames according to various protocol
requirements. The port 128 includes a shared, time multi-
plexed pipeline for receiving frames (or information). The
pipeline includes a serializer/deserializer (SERDES) 210, a
physical coding sub-layer (PCS) 212, and a time multiplexed
media access control (MAC) sub-layer 214. The SERDES
210 receives incoming serial data and converts it to parallel
data. The parallel data is then sent to the PCS 212 and the
MAC 214 before being sent to a receive segment (or receive
port (RPORT) 202.

The RPORT (or receive segment) 202 temporarily stores
received frames at a memory storage device, shown as PBUF
(pause bufter) 204. The frames are then sent to a transmit
segment (or transmit port (TPORT) 208 via the crossbar 200.
The TPORT 208 includes a memory device shown as a trans-
mit buffer (TBUF) 206. The TBUF 206 may be used to stage
frames or information related to frames before they are trans-
mitted. The TPORT 208 may also include a shared MAC and
PCS or use the MAC and PCS of RPORT 202. The SERDES
at TPORT is used to convert parallel data into a serial stream.

The switch element 120 may also include a control port
(CPORT) 216 that communicates with the processor 224. The
CPORT 216 may be used for controlling and programming
the switch element 120. In one embodiment, the CPORT 216
may include a PCI (Peripheral Component Interconnect) 222
interface to enable the switch element 120 to communicate
with the processor 224 and a memory 226. The processor 224
controls overall switch element operations, and the memory
226 may be used to store firmware instructions 228 for con-
trolling switch element 120 operations.

The CPORT 216 includes an input buffer (CBUFI) 218,
which is used to transmit frames from the processor 224 to the
ports 128. The CPORT 216 further includes an output buffer

10

15

20

25

30

35

40

45

50

55

60

65

6

(CBUFO) 220, which is used to send frames from the PBUFs
204, the TBUFs 206, and CBUFI 218 that are destined to
processor 224.

Port 128 described above may be referred to as a “base-
port” that may have more than one network link available for
receiving and transmitting information. Each network link
allows the base-port 128 to be configured into a plurality of
independently, operating sub-ports, each uniquely identified
for receiving and sending frames. The sub-port configuration
may vary based on protocol and transfer rates. For example,
port 128 may be configured to operate as four single lane
Ethernet ports, three single lane Ethernet ports and one single
lane Fibre Channel port, two single lane Ethernet ports and
two single lane Fibre Channel ports, one single lane Ethernet
port and three single lane Fibre Channel port, four single lane
Fibre Channel port, two double lane Ethernet ports, 1 double
lane Ethernet port and two single lane Ethernet ports, one
double lane Ethernet port, one single lane Ethernet port and
one single lane Fibre Channel port, one double lane Ethernet
port and two single lane Fibre Channel port, one four lane
Ethernet port or one four lane Fibre Channel port. Port 128
uses some logic that is shared among the multiple sub-ports
and some logic that is dedicated to each sub-port.

Port 128 may use TCAMs to store routing information. A
TCAM memory as a CAM maps a key to a data value. In
contrast to a simple CAM memory, a TCAM may include
“don’t care” bits in its entries, which are ignored during a
search.

A TCAM cell typically includes two SRAM cells and
matching logic. During a search, a match line is connected to
the TCAM cells is pre-charged and if there is at least one cell
that does not match, then the match line is driven low, indi-
cating a no match. In a typical TCAM search, a key is used as
an input to a TCAM and if there is a match, then the corre-
sponding data from a RAM array is fetched. If there are
multiple hits, then a priority encoder gives priority to one of
the hits.

The TCAM used by ports 128 may include wordlines,
where each wordline includes a certain number of bits. For
each bit in a wordline, the TCAM may include storage ele-
ments, designated as X(i) and Y(i). The value of X(i) and Y(i)
determine a search criteria. The TCAM may store fields that
are compared to fields in a packet received by a port. It is
desirable to protect the TCAM information because TCAMs
are susceptible to single bit errors. The embodiments
described herein protect TCAM information.

The X and Y values of a TCAM entry are different, with 4
possible codes for each bit entry, for example, a (0,0) indi-
cates a “never match”, (0,1) indicates a match on 1, (1,0)
indicates a match on 0 and (1,1) indicates an “always match.
When the never match condition is set, there is no need to
check for errors as any bit and all bits could have this code set.
If one bit is upset to a wrong value, all the other bits will still
perform a desired function. The embodiments described
herein protect data for the “0” and “1” cases, as described
below.

FIG. 3 shows a system 300 for protecting TCAM data,
according to one embodiment. System 300 includes a TCAM
306 that may be used to store a plurality of entries. When data
310 is written to the TCAM 306, a special ECC generator 308
is used to generate the appropriate ECC for data 310. It is
noteworthy that between X and Y values for an entry, one of
the values is the value for the search data and the other one is
the complement of the search data.

A search key 302 is used to search the TCAM 306. The
search key 302 is fed into a ECC generator 304. The ECC
generator 304 adds an ECC value to the search key 302. The

US 9,170,880 B1

7
ECC value then becomes a part of the normal TCAM search.
Ifabit error occurs, the entry will fail to match, when it should
have. This will result in an error condition because there will
be no TCAM match. The processor 224 can be notified for
taking any corrective action.

If there are no errors, then the TCAM hits are encoded by
the priority encoder 312. The RAM, not shown, is read based
on a TCAM match 314 and TCAM entry 316.

FIG. 4 shows a process 400 for using system 300, accord-
ing to one embodiment. The process begins in block B402. In
block B404, ECC values are generated for data 310. The ECC
value is generated by the special ECC generator 308 and
stored at TCAM 306.

In block B406, the process determines if an X value for an
entry is to be written. If yes, then in block B408, a comple-
ment of the ECC value is created. For example, if the normal
ECC value calculated for the X value being written into the
TCAM was a hexadecimal value of 0x55, then the value that
actually gets written into the TCAM for the ECC bits X value
would be a hexadecimal value of 0xCC. Thereafter, in block
B410, data 310 is written with the complement ECC value to
TCAM and the process is complete in block B414.

Ifinblock B406, the X value is not being written, then data
310 and the ECC value that is generated in block B404 are
written and the process ends.

FIG. 5A shows a process 500 for searching TCAM 306
(FIG. 3) with a search key appended with ECC, according to
one embodiment. The process begins in block B502. In block
B504, ECC is determined on a raw search key 302. The ECC
is generated by ECC generator 304.

In block B504, the generated ECC is appended to the
search key 302, resulting in a “modified search key”. The
modified search key is then used in block B508 to search the
TCAM 306. Thereafter, the process ends in block B510.

Details regarding block B508 are provided in FIG. 5B as
B508A-B508H. In block B508A, the TCAM entry that is
being processed at any given time is set to “n”. In block
B508B, the TCAM is configured such that a value of “0”
indicates a match and when there is a match the entry is set to
0 in block B508C.

Inblock B508C, the process determines if an entry number
“n” is greater than the maximum number of TCAM entries. If
yes, the process ends at block B510. Ifnot, then in block B, the
process compares modified search key to determine if there is
a match. If there are no errors and there is a match, then in
block B508G, the match is set to 1 and the match entry is set
to n. If there is an error, then in block B508F, the process
moves to the next entry (i.e. n+1) and the process reverts back
to block B508D.

Because ECC checking is integrated into the normal func-
tion of the TCAM search, no special processing of the search
ECC is required. The ECC of the search key is computed
using standard techniques and appended to the original search
key to form a larger search key to apply to the TCAM for
processing. The embodiments presented have the advantage
of not requiring a read of any matching TCAM entry data to
check for a bit error. This provides more bandwidth and an
energy efficient method for TCAM error protection. It also
does not allow false TCAM matches to occur due to bit errors
in the TCAM stored data.

In one embodiment, a network device using a TCAM for
storing a plurality of entries is provided. The network device
includes a first error correction code (ECC) generator (308)
for generating ECC for data that is written to the TCAM; and
a second ECC generator (304) for appending ECC to a search
key 302 used for searching the TCAM. The search key with

10

15

20

25

30

35

40

45

50

55

60

65

8

the appended ECC is used to search for TCAM entries and
detect any errors without having to read data stored at the
TCAM.
In yet another embodiment, a machine implemented
method for a network device is provided. The method
includes generating error correction code (ECC) for writing
datato a TCAM used by the network device; storing the ECC
code and the data at the TCAM; generating an ECC for a
search key, used for searching the TCAM; and detecting any
error in the stored data by using the search key with appended
ECC, during a TCAM search operation.
In another embodiment, a method for detecting error at a
TCAM of a network device is provided. The method includes
storing error correction code (ECC) and the data at the TCAM
used by the network device; appending an ECC to a search
key that is used for searching the TCAM; detecting any error
in the stored data by using the search key with the appended
ECC during a search operation; and notifying a processor of
the network device regarding any detected error.
The above description presents the best mode contem-
plated for carrying out the present invention, and of the man-
ner and process of making and using it, in such full, clear,
concise, and exact terms as to enable any person skilled in the
art to which it pertains to make and use this invention. This
invention is, however, susceptible to modifications and alter-
nate constructions from that discussed above that are fully
equivalent. For example, the foregoing embodiments may be
implemented in adapters and other network devices. Conse-
quently, this invention is not limited to the particular embodi-
ments disclosed. On the contrary, this invention covers all
modifications and alternate constructions coming within the
spirit and scope of the invention as generally expressed by the
following claims, which particularly point out and distinctly
claim the subject matter of the invention.
What is claimed is:
1. A network device comprising:
a plurality of ports for receiving and sending information;
aternary content addressable memory (TCAM) for storing
aplurality of entries and for storing routing information;

afirst error correction code (ECC) generator for generating
ECC that is appended to data that is written to the
TCAM,; and

asecond ECC generator for appending ECC to a search key
used for searching the TCAM; wherein the search key
with the appended ECC is used to search for TCAM
entries to 10 detect any bit errors without having to read
any data associated with the data stored at the TCAM.

2. The network device of claim 1, wherein the network
device is a switch element.

3. The network device of claim 2, wherein at least one of
the plurality of ports of the switch element is configured to
operate as a Fibre Channel port.

4. The network device of claim 2, wherein at least one of
the plurality of ports of the switch element is configured to
operate as an Ethernet port.

5. The network device of claim 2, wherein at least one of
the plurality of ports of the switch element is configured to
operate as a Fibre Channel over Ethernet port.

6. The network device of claim 1, wherein the network
device is an adapter for sending and receiving information.

7. The network device of claim 1, wherein if any error is
detected during a TCAM search, then a processor of the
network device is notified of the error.

8. A machine implemented method for a network device,
comprising: generating error correction code (ECC) for writ-
ing data to a ternary content addressable memory (TCAM)
used by the network device, wherein the network device

US 9,170,880 B1

9

comprises a plurality of ports for receiving and sending infor-
mation and the TCAM is used for storing routing information;
storing the ECC code and the data at the TCAM, wherein the
ECC code is appended to the data; generating an ECC for a
search key, used for searching the TCAM; and detecting any
error in the stored data by using the search key with appended
ECC, during a TCAM search operation.

9. The method of claim 8, further comprising:

notifying a processor of the network device regarding any

detected error.

10. The method of claim 9, wherein the network device is
a switch element.

11. The method of claim 9, wherein at least one of the
plurality of ports of the switch element is configured to oper-
ate as a Fibre Channel port.

12. The method of claim 9, wherein at least one of the
plurality of ports of the switch element is configured to oper-
ate as an Ethernet port.

13. The method of claim 9, wherein at least one of the
plurality of ports of the switch element is configured to oper-
ate as a Fibre Channel over Ethernet port.

14. The method of claim 8, wherein the network device is
an adapter for sending and receiving information.

15. A method for detecting error in a ternary content
addressable memory (TCAM) of a network device, compris-

5

10

15

20

10

ing: storing error correction code (ECC) and the data at the
TCAM used by the network device, wherein the network
device comprises a plurality of ports for receiving and send-
ing information and the TCAM is used for storing routing
information, and wherein the ECC is appended to the data as
stored in the TCAM; appending an ECC to a search key that
is used for searching the TCAM; detecting any error in the
stored data by using the search key with the appended ECC
during a search operation; and notifying a processor of the
network device regarding any detected error.

16. The method of claim 15, wherein the network device is
a switch element.

17. The method of claim 16, wherein at least one of the
plurality of ports of the switch element is configured to oper-
ate as a Fibre Channel port.

18. The method of claim 16, wherein at least one of the
plurality of ports of the switch element is configured to oper-
ate as an Ethernet port.

19. The method of claim 16, wherein at least one of the
plurality of ports of the switch element is configured to oper-
ate as a Fibre Channel over Ethernet port.

20. The method of claim 15, wherein the network device is
an adapter for sending and receiving information.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,170,880 B1 Page 1of1
APPLICATION NO. : 14/048849

DATED - October 27, 2015

INVENTOR(S) : Frank R. Dropps

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In Column 8, Line 46, in Claim 1, after “entries to” delete “10™.

Signed and Sealed this
Thirty-first Day of January, 2017

Tcbatle X Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

